

Challenges in the management of people with epilepsy after severe brain injury

> Matthias Koepp, MD PhD UCL Queen Square Institute of Neurology London, UK

Disclosures

Company Name	Nature of Affiliation				
Novartis	 Honoraria, Consulting fees, expenses 				
• UCB	 Consulting fees, expenses 				
EISAI, Bial	Consulting fees				
• GE	Consulting fees				
• EU-FP7	Research funding for "EURIPIDES"				

Definitions

Epilepsy:

"disorder characterised by an enduring predisposition to generate epileptic seizures and by the neurobiological, cognitive, psychological and social consequences of this condition."

Epileptogenesis:

includes **both** the **development** of an epilepsy condition and **progression** after the condition is established.

Biomarker – diagnostic / prognostic:

indicator of normal biologic or pathogenic processes

Surrogate endpoint – predicting treatment response:

measurement used in therapeutic trials as substitute for clinically meaningful endpoint of how patient functions and predicts effect of therapy.."

Risk factors for epilepsy

- Febrile convulsions
 - 3- 5% of children have FC
 3-5% of children with FC will develop epilepsy
- Head Injury
 - risk dependent on severity, highest risk with missile injuries
- CNS Infections
 - encephalitis, meningitis, abscess

Risk factors for epilepsy

- Learning disability
- Cerebrovascular Diseases
- Dementia
- Alcohol
- Recreational drugs
- Rural residence
- Socio-economic status
- Race
- Male sex

- 9 15 fold
- 3 5 fold
- 6 8 fold
- only risk factor in 1/3 of people 20 – 40 years cocaine, heroin

- higher in rural areas
- more in lower strata
- more in Africans
- more head trauma

Highest risk

<u>ش</u>

- 50+ year old male
- African origin (grew up near a river)
- with a Hx of prolonged febrile convulsions
- Immigrant
- unemployed
- lives in rural area (Bovingdon)
- Is drug and alcohol dependent
- was in the gulf war or is member of a street gang and suffered from a serious head injury

Highest risk

<u></u>

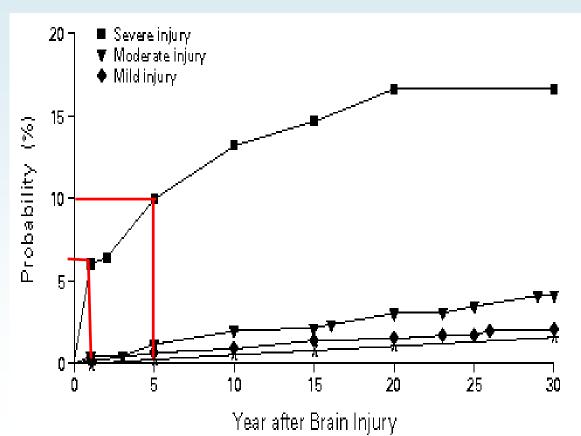
- 50+ year old male
- African origin (grew up near a river)
- with a Hx of prolonged febrile convulsions
- Immigrant
- unemployed
- lives in rural area (Bovingdon)
- Is drug and alcohol dependent
- was in the gulf war or is member of a street gang and suffered from a serious head injury

TBI and epilepsy

- Intracerebral hematoma (exp subdural hematoma)
- Brain contusion

biparietal contusion (66%) dural penetration with metal fragments (62.5%) multiple intracranial operations (36.5%) multiple subcortical contusions (33.4%) subdural hematoma with evacuation (27.8%) Midline shift > 5 mm (27.8%) multiple/bilateral cortical contusion (25.8%)

 Increased injury severity LOC/amnesia > 24hrs GCS < 10


• Early post-traumatic seizures Immediate 1st 24h Early seizures 1st 7d Late seizures >7d

• > 50 years

TBI and epilepsy

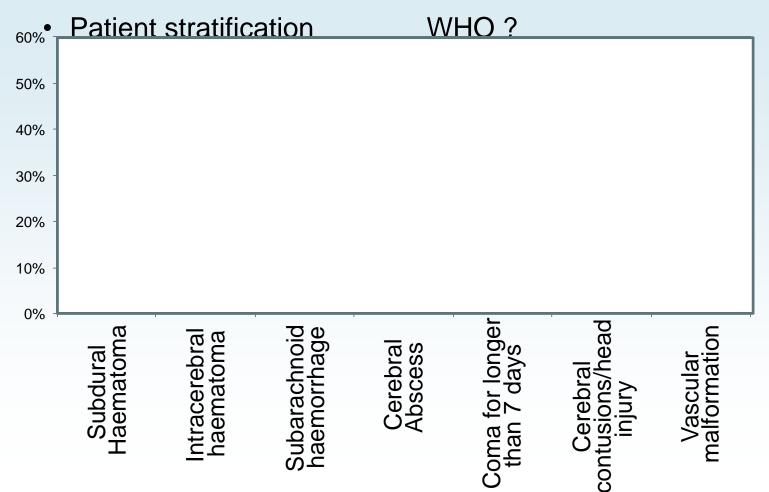
Annegers et al, NEJM 1998

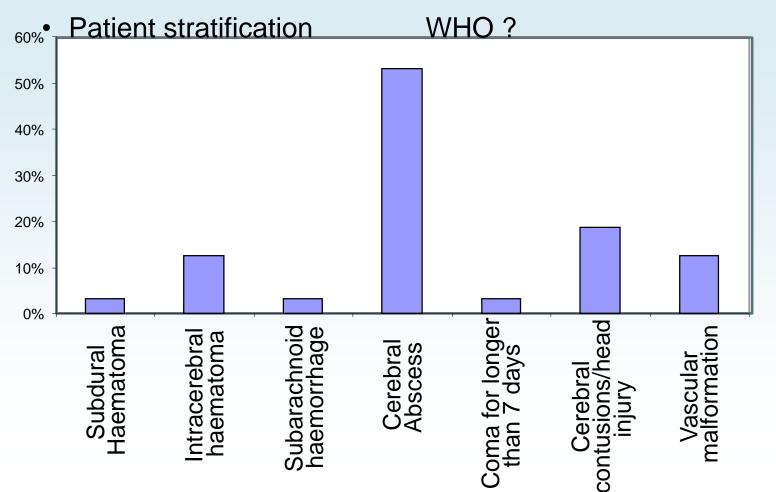
- Cumulative 5-year probability mild injury 0.5% moderate 1.2% severe 10%
- Highest risk: 1st year after trauma decreasing progressively
- Risk increased up to ?? Years moderate injury: up to 10yrs mild injury: over 20 yrs

Patient stratification WHO ?

Early studies: AED prevented early and late seizures, but often methodologically flawed

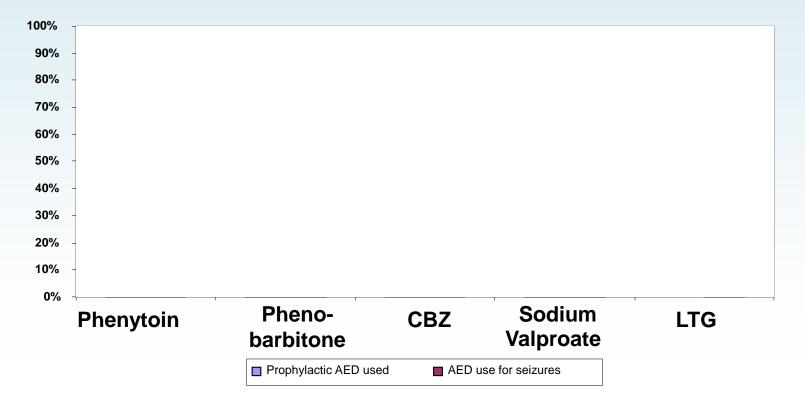
Later studies: prophylaxis only effective at prevention of early seizures

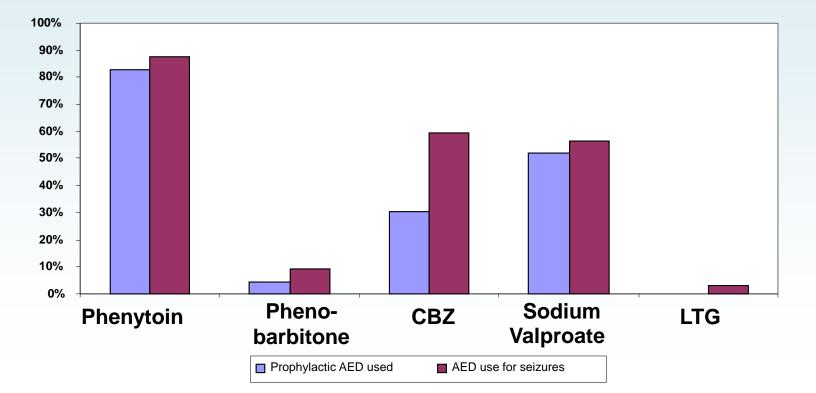

(Chang & Lowenstein 2003)


Risk factors for late seizures:

GCS<10 cortical contusion depressed skull # subdural haematoma, epidural haematoma, intracerebral haematoma penetrating head wound early seizures

Post-traumatic Epilepsy **#UCL** Prophylactic treatment ?


- Questionnaire: 50 neurosurgeons from 21 neurosurgical centres
- Use of prophylaxis in various acute neurosurgical conditions ?
- Which AED and for how long ?


- Patient stratification
- Prediction of outcome

WHO ? WHICH DRUG ?

- Patient stratification
- Prediction of outcome

WHO ? WHICH DRUG ?

UCL

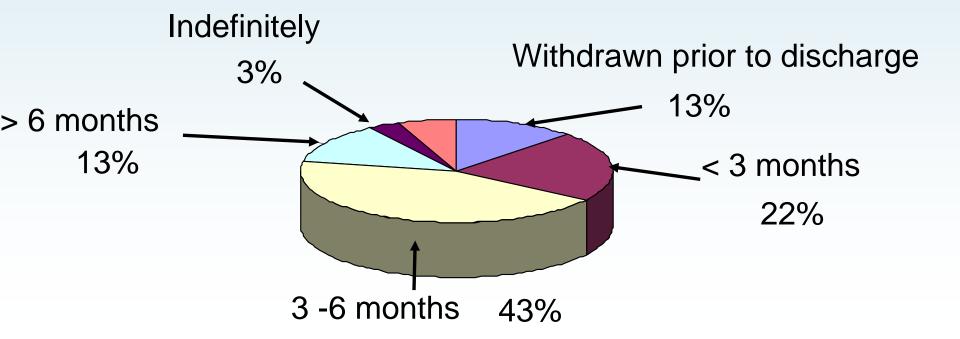
Patient stratification

Indefinitely

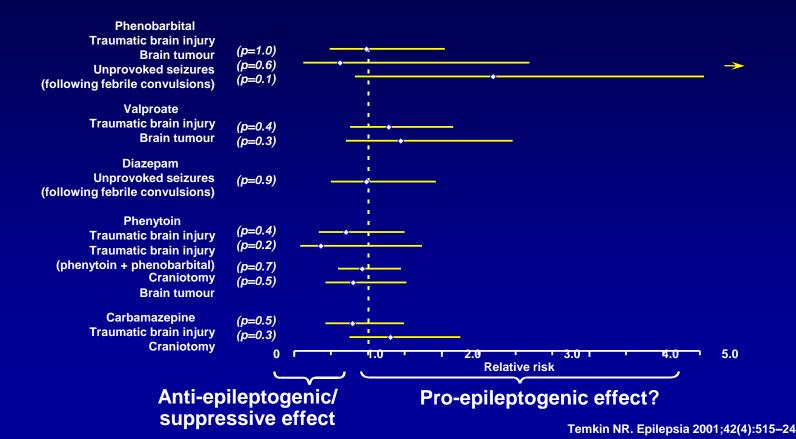
- Prediction of outcome
- Monitoring of treatment

WHO ? WHICH DRUG ? WHEN START / STOP?

Withdrawn prior to discharge


> 6 months

< 3 months


3-6 months

- Patient stratification
- Prediction of outcome
- Monitoring of treatment

WHO ? WHICH DRUG ? WHEN START / STOP?

Post-traumatic Epilepsy Evidence base for prophylactic treatment

Post-traumatic Epilepsy Prophylactic treatment

No place for this! – WHY?

Animal models used to screen for AED do not reproduce relevant epileptogenic mechanisms of human post-traumatic epilepsy

AED tested devoid of antiepileptogenic properties
 Valproate: antiepileptic property in animal models, but increases risk of post-traumatic epilepsy
 Topiramate: Iowers glutamate release after TBI

> suboptimal treatment

dosing too little onset too late duration too short

erratic compliance

Heterogenicity of study population

Post-traumatic Epilepsy Starting treatment

Clinical situations in which one may consider starting an AED for epilepsy:

- Prophylactic use
- Newly diagnosed epilepsy
 - Single Seizure
 - Recurrent Seizures
- Chronic epilepsy

Post-traumatic Epilepsy Starting treatment after single seizure ?


- This is a controversial area
- > A single unprovoked attack usually not treated
- General practice: defer treatment until 2 or more seizures, although patients perceived to be at high risk may be treated after a single attack
- AED treatment following a single seizure may reduce the risk of seizure recurrence in the short term although long term prognosis seems unchanged

Clinical treatment gaps

- Patient stratification
- Prediction of outcome
- Monitoring of treatment

WHO ? WHICH DRUG ? WHEN START / STOP?

UCI

all epilepsies begin with a 1st seizure

Clinical treatment gaps

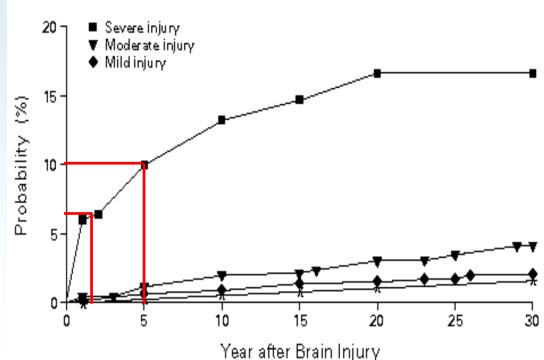
- Patient stratification
- Prediction of outcome
- Monitoring of treatment

WHO ? WHICH DRUG ? WHEN START / STOP?

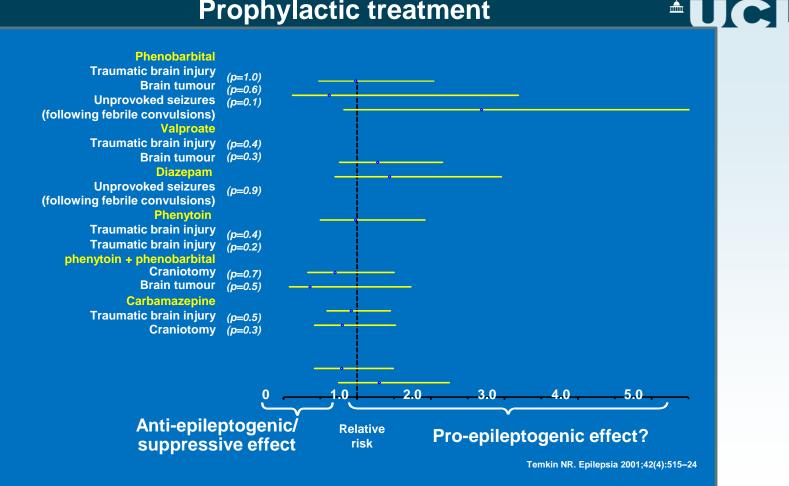
EEG: high specificity, but low sensitivityMRI: high sensitivity, but low specificity

Anti-epileptogenesis trials **UCL**

Post-traumatic epilepsy


 Hospital admission for TBI: ~ 5M p.a. in Europe

• Cumulative 5-year probability:


mild injury (0.5%)

moderate (1.2%)

severe (10%)

Prophylactic treatment

Early studies: AED prevented early and late seizures, but often methodologically flawed Later studies: prophylaxis only effective at prevention of early seizures

Anti-epileptogenesis "where the money is"

110.000 ischemic strokes per year in UK.

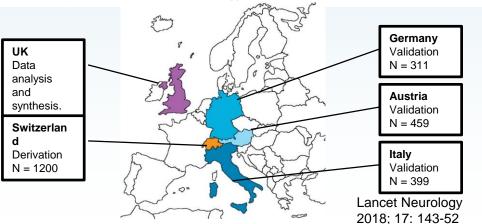
3.000 – 4.000 new vascular epilepsy cases per year in UK.

Anti-epileptogenesis-trials "where the money is...spent"

Table 3	. The require	d sample s	ize to acl	nieve $\alpha = 1$	0.05 and	$\pi = 0.8 \text{ f}$	or select	ed value	s of P an	d τ.	
Ρ τ	0.01	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	0.99
0.03	1992458	19322	4656	1988	1070	652	428	294	208	147	99
0.1	554752	5393	1303	558	301	184	121	83	59	42	28
0.2	246672	2408	584	251	136	83	55	38	27	19	13
0.3	143979	1413	345	149	81	50	33	23	16	12	8
0.4	92632	915	225	98	Б4	33	22	15	11	8	5
0.5	61824	617	153	67	37	23	15	11	8	5	4
0.6	41285	418	105	47	26	16	11	8	6	4	3
0.7	26614	275	71	32	18	11	8	6	4	3	2
0.8	15611	168	45	21	12	8	5	4	3	2	1
0.9	7052	84	24	12	7	5	3	2	2	1	1
			<u> </u>		-						

Friedman, A., Bar-Klein, G., Serlin, Y., Parmet, Y., Heinemann, U. & Kaufer, D. (2014).

Anti-epileptogenesis-trials "where the money is...spent"

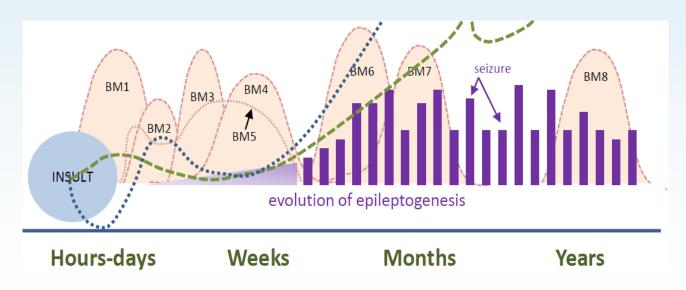

Table 3	. The require	ed sample s	size to ac	hieve $\alpha =$	0.05 and	$\pi = 0.8 f$	for select	ed value	s of P an	nd τ.	
Ρ τ	0.01	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	0.99
0.03	1992458	19322	4656	1988	1070	652	428	294	208	147	99
0.1	554752	5393	1303	558	301	184	121	83	59	42	28
0.2	246672	2408	584	251	136	83	55	38	27	19	13
0.3	143979	1413	345	149	81	50	33	23	16	12	8
0.4	92632	915	225	98	Б4	33	22	15	11	8	5
0.5	61824	617	153	67	37	23	15	11	8	5	4
0.6	41285	418	105	47	26	16	11	8	6	4	3
0.7	26614	275	71	32	18	11	8	6	4	3	2
0.8	15611	168	45	21	12	8	5	4	3	2	1
0.9	7052	84	24	12	7	5	3	2	2	1	1

Friedman, A., Bar-Klein, G., Serlin, Y., Parmet, Y., Heinemann, U. & Kaufer, D. (2014).

[•]UCL

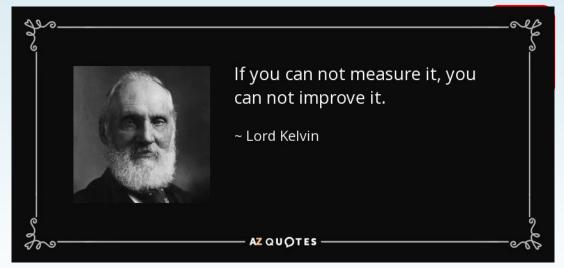
Prediction of late seizures after ischaemic stroke with a novel prognostic model (the SeLECT score): a multivariable prediction model development and validation study

Marian Galovic, Nico Döhler, Barbara Erdélyi-Canavese, Ansgar Felbecker, Philip Siebel, Julian Conrad, Stefan Evers, Michael Winklehner, Tim J von Oertzen, Hans-Peter Haring, Anna Serafini, Giorgia Gregoraci, Mariarosaria Valente, Francesco Janes, Gian Luigi Gigli, Mark R Keezer, John S Duncan, Josemir W Sander, Matthias J Koepp, Barbara Tettenborn



diagnose and manage	Finland	stroke seizures			
poststroke seizurest	1	Francesco Brigo, Italy			
Francesco Brigo, Johan Prill	ram 39,29,5,3039,6effett Ivog	yam			
Zelano	Torolak	09.40 - 10.20 PSE in			
	10.50 - 11.30 Prediction	young stroke patients			
12.00 - 13.00 Lunch	of PSE	Petra Redfors. Sweden			
	Matthias Koepp, UK	10.20 - 10.40 Coffee			
Preclinical	11.30 - 13.30 Lunch	break			
13.00 - 13.10 Opening	Making a difference	10.40 - 11.20 Status			
nemarks	for the elderly with	epilepticus in			
Francesco Brigo and	Applingser (Eisai-				
Johan Zelano	sponsored external	cerebrovascularly III			
Jonan zerano	symposium)	patients			
13.10 - 13.50 Modelling		Eugen Trinka, Austria			
PSE	Management and	11.20 - 12.00			
Asia Pitkanen, Finland	prognosis	Prognosis of PSE: the			
13.50 - 14.30 Precinical		impact on mortality			
development of drugs	13.30 - 14.10	Johan Zelano, Sweden			
for PSE	Neuroimaging: pictals	12.00 - 13.00 Lunch			
Emile Russie, Italy	and differential	TEND - TEND LUTION			
	diagnosis				
14.30 - 15.15 Coffee	Nivedita Agarwal, Italy	13.00 - 13.40 Charges			
break	14.10 - 14.40 Coffee	in utilization of			
15.15 - 16.00	break	antieplieptic drugs in			
Pharmacology of stroke		various indications in			
prophylaxis and AEDs	14.40 - 15.20 AED	the elderly in Norway-			
Cecilie Johannessen	treatment of post stroke seizures: when	challenges and clinical implications			
Landmark, Norway!	and with what?	Arton Baftia, Norway			
16.00 - 17.00 Platform	Torbiom Tomson,	Arton Bartia, Norway			
session (short abstract	Sweden	13.40 - 14.20 Hot topic			
presentations)	and day	2			
humaning(000)	15.20 - 16.00 Secures	The SeLECT score for			
17.00 - 19.00 Welcome	in the context of occult	prediction of PSE			
reception	cerebroxascular	Marian Galovic, UK			
	disease	Harder Gerovic Cris			
	Hedley Emsley, UK	14.20 - 14.30 Closing			
	16.00 - 16.40	remarks			
	Optimizing	Franceso Brigo: Johan			
	orrebrovascular	Zelano			

Feasibility of anti-epileptogenesis trials

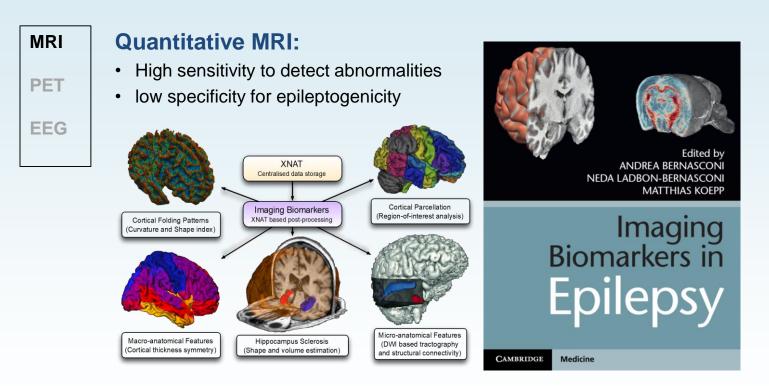

"right treatment for the right person at the right time"

- Who? enriched population
- How? therapeutic targets relevant mechanism, early diagnosis

Feasibility of anti-epileptogenesis trials

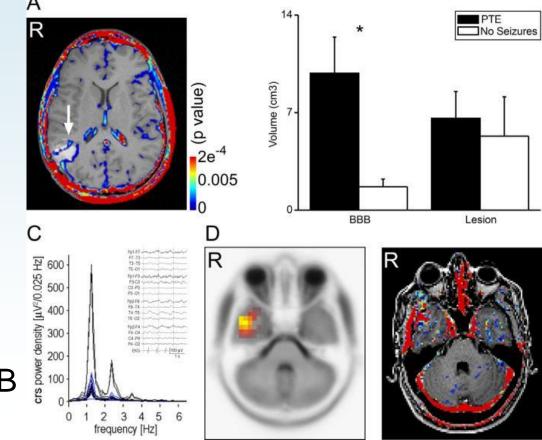
"right treatment for the right person at the right time"

identify persistent measurable disturbances characterising the "enduring propensity"


Pitkanen et al., 2013

Key requirement for anti-epileptogenesis trials Biomarker of disease activity (other than seizures)

- quantifiable
- objectively measured and evaluated
- reproducible
- cheap and easy to obtain
- · results available quickly
- high accuracy
- good sensitivity
- good specificity


Prognostic Biomarkers of post-stroke epilepsy

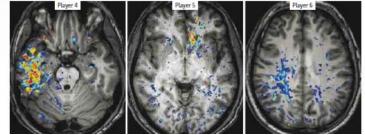
UCL

Imaging BBB dysfunction – too leaky CL Dynamic contrast-enhanced imaging (DCE)

- BBB disruption after TBI 82.4% PTE 25% non-epileptic patients
- Volume of cerebral cortex with BBB disruption larger in PTE patients
- Slow wave EEG activity: localized to region of BBB disruption in 70%, correlated to volume of BBB disrupted cortex



Imaging BBB dysfunction – too leak UCL Dynamic contrast-enhanced imaging (DCE)


BBB disruption in

16 amateur football players13 track and field athlete "controls"

- focal BBB lesions in different cortical regions including temporal (player 4) frontal (player 5) parietal (player 6)
- No difference in concussion scores

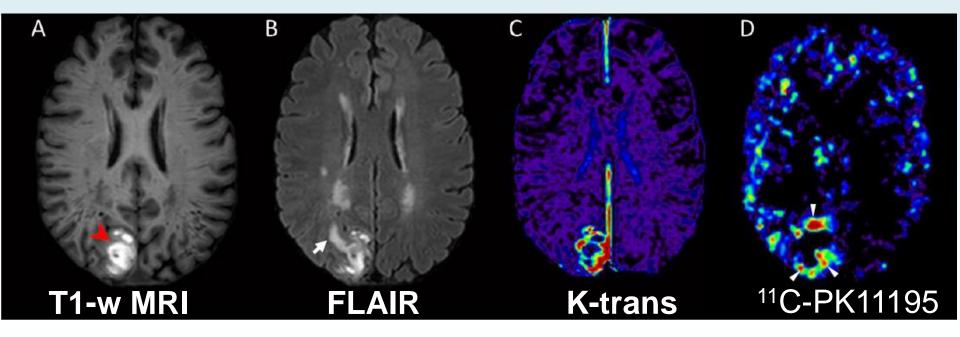
B Pathological BBB

Imaging BBB dysfur Dynamic contrast-enha

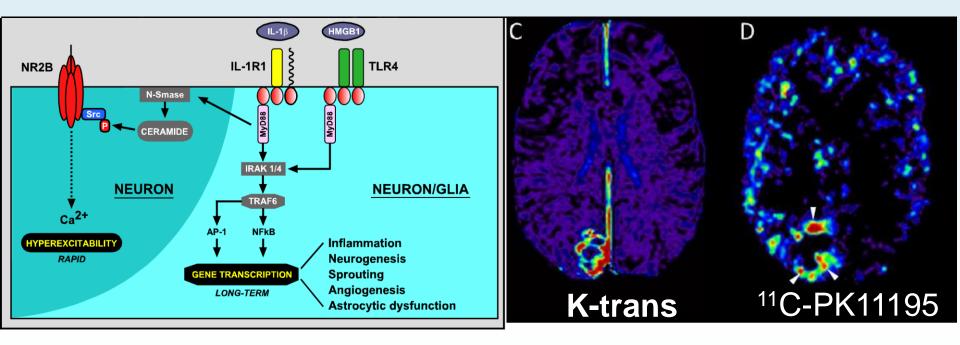
- BBB disruption in
 - 16 amateur football players13 track and field athlete "control
- focal BBB lesions in different cortical regions including temporal (player 4) frontal (player 5) parietal (player 6)
- No difference in concussion score

ENGLAND BACKS BREXIT

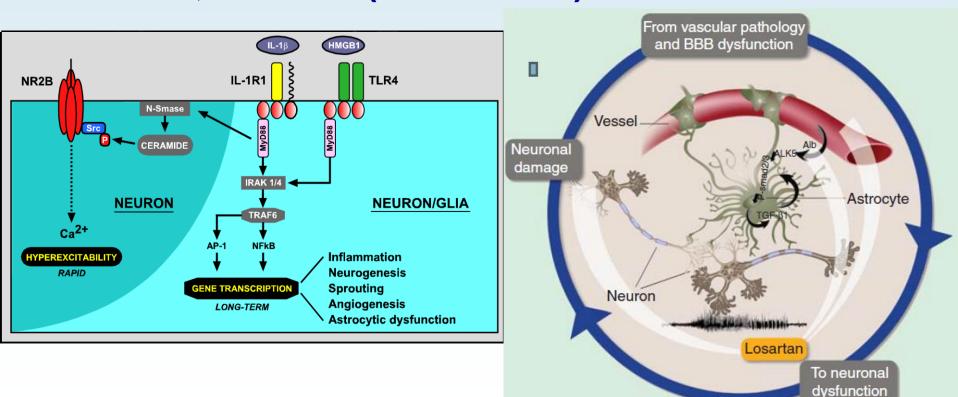
BBB dysfunction

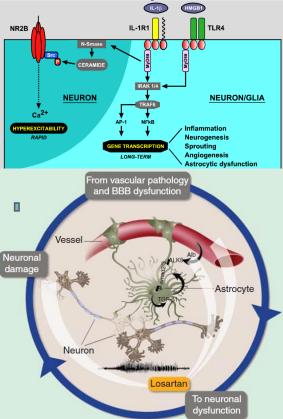


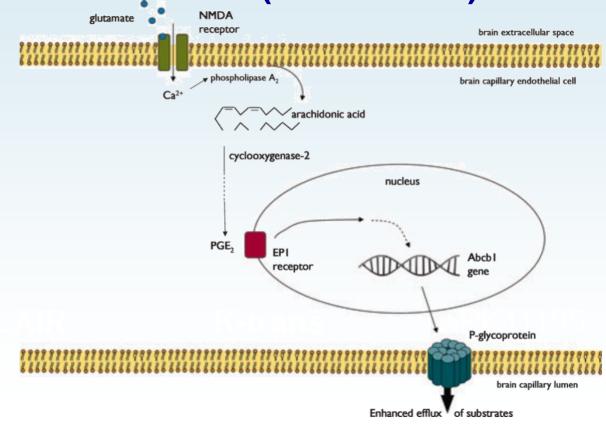
Imaging biomarker

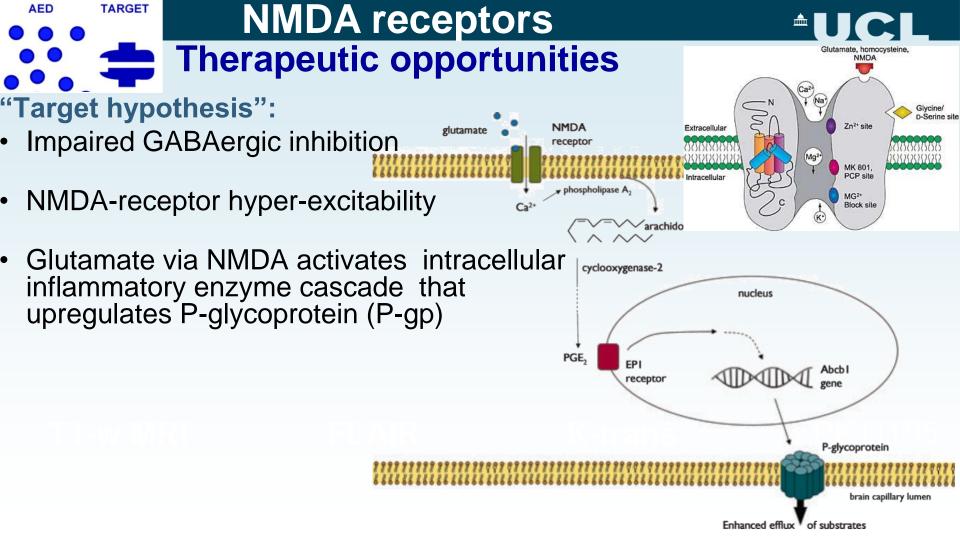

too leaky $\rightarrow 1^{st}$ phase of epileptogenesis:

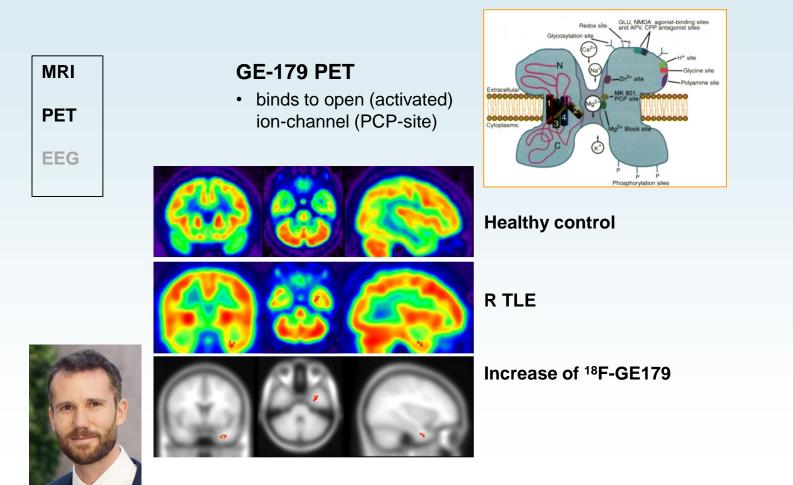
- Diffusion-weighted imaging (DWI)
- post-contrast FLAIR
- dynamic contrast-enhanced imaging (DCE)


maging BBB dysfunction and inflammationUCL

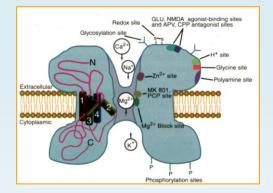

maging BBB dysfunction and inflammation UCL Therapeutic opportunities: anakinra (AM Vezzani)



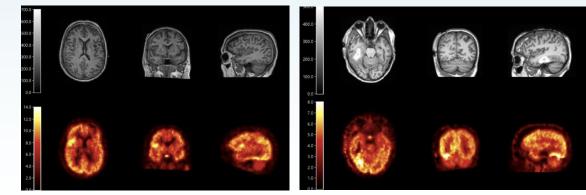

BBB dysfunction and inflammation **UCL** Therapeutic opportunities: anakinra, losartan (A Friedman)


BBB dysfunction and inflammation **UCL** Therapeutic opportunities: anakinra, losartan, Cox-2 inhibitors (H Potschka)

Prognostic Biomarkers of post-stroke epilepsy

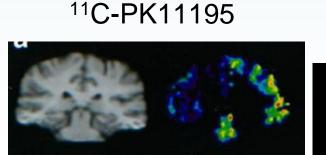


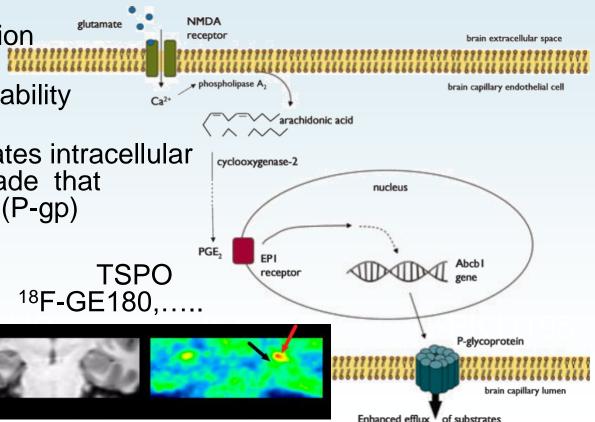
Prognostic Biomarkers of post-stroke epilepsy

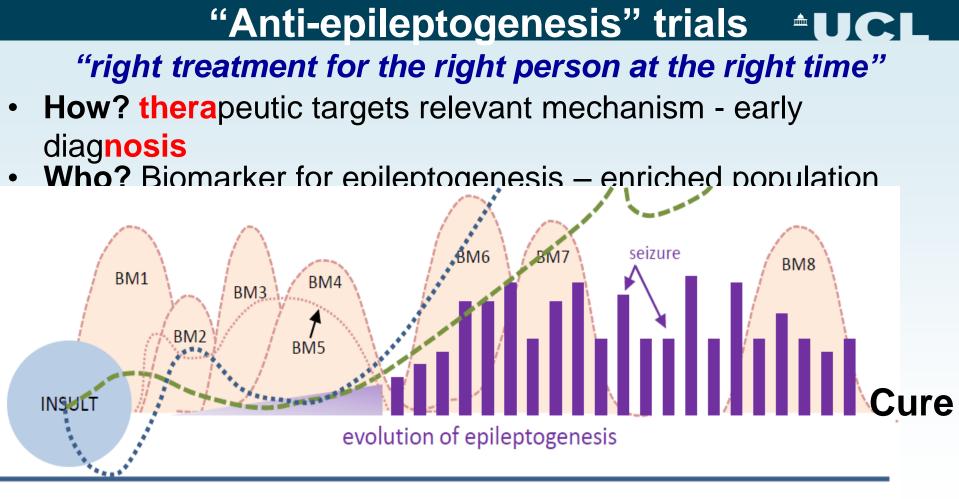


GE-179 PET

- binds to open (activated) ion-channel (PCP-site)
- Widespread changes post-TBI and stroke


UC





Inflammation Therapeutic opportunities

- **"Target hypothesis":**
- Impaired GABAergic inhibition
- NMDA-receptor hyper-excitability
- Glutamate via NMDA activates intracellular inflammatory enzyme cascade that upregulates P-glycoprotein (P-gp)

Hours-days

Weeks

Months

Why bother?

Why bother?

- Mortality
 - 2 3x that of the general populationStandardised Mortality RatesOverall: 2 3

In the first 5 years:	4 – 5
20 - 40 years:	5 – 8
Chronic epilepsy:	8 - 15

Why bother?

- Mortality
- The Burden of Epilepsy NHS
 - 0.25% of GP costs
 - 0.63% of hospital costs
 - 0.95% of pharmaceutical costs
 - Over £585M per year direct costs
 - Social costs up to 4 fold greater

How to define drug resistance?

- 30% patients (UK: 150.000 /)
- drug-treated history after two failed AED, only 3-4% chance of seizure freedom

(Kwan & Brodie, NEJM 2000)

• Role of genetics

Post-traumatic Epilepsy Role of genetics

- FH more common in late PTS, only in patients <16 years (Jennett et al)
- no increased risk amongst 1st degree relatives (Schaumann, Ottman)
- Best predictor for PTE: history of depression, even FH
- Only one genetic variant studied in any detail in any context

Post-traumatic Epilepsy Role of genetics

- ApoE alleles: 3 common ε2, ε3, ε4 Encode separate isoforms of protein
- Accepted role in Alzheimer's disease
- ε4 increases risk of poor outcome after TBI, and other acute injuries
- In TBI, ApoEε4 allele suggested roles:
 - No effect on outcome mild/moderate injury
 - Predicts risk of poor outcome after severe TBI
 - Increases risk of post-traumatic seizures

[•]UCL

Outlook

In this section

A - Z of epilepsy topics

What is epilepsy?

Blog

Epileptic seizures

First aid

Just diagnosed

Diagnosing epilepsy

Treatment

Living with epilepsy

Parents, carers & teachers

Personal stories

Your epilepsy

Associated conditions

Epilepsy TV

Glossany

Neurologist talks school rugby after son's concussion

Professor Matthias Koepp is a neurologist at Epilepsy Society. He is also father to two teenage boys, Noah, 16, (left, below) and Joshua, 13. Both of them are keen rugby players. Here he talks about the dilemma of being both a dad and a neurologist on the touchline and about his anxiety following Noah's recent concussion during a game.

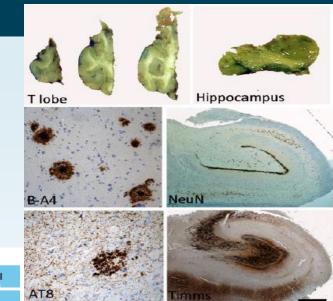
'Watching my two boys play rugby in their school teams has always concerned me as a neurologist. Of course you are on the touchline cheering them on, wanting them to win, but particularly by the age of 16 these boys are huge. They are heavy, they are fit, but their frontal lobes are not fully developed so they have no fear. They do not fully understand the consequences of their actions. They think they are invincible and the adrenaline is pumping.

Outlook

Prediction of treatment response

generic tool for various disorders
 Prediction of cognitive decline

Brain Advance Access published August 7, 2016

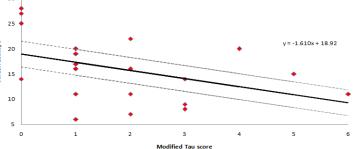

BRAIN 2016: Page 1 of 15 / 1

Hyperphosphorylated tau in patients with refractory epilepsy correlates with cognitive decline: a study of temporal lobe resections

Xin You Tai,^{1,2} Matthias Koepp,² John S. Duncan,² Nick Fox,³ Pamela Thompson,² Sallie Baxendale,² Joan Y. W. Liu,¹ Cheryl Reeves,¹ Zuzanna Michalak¹ and Maria Thom¹

Outlook

Prediction of treatment response


generic tool for various disorders
 Prediction of cognitive decline

Hyperphosphorylated tau in patients with refractory epilepsy correlates with cognitive decline: a study of temporal lobe resections

Xin You Tai,^{1,2} Matthias Koepp,² John S. Duncan,² Nick Fox,³ Pamela Thompson,² Sallie Baxendale,² Joan Y. W. Liu,¹ Cheryl Reeves,¹ Zuzanna Michalak¹ and Maria Thom

Modified Tau score vs Verbal Fluency S (pre-op)

Conclusions

- Identify individuals at risk
- Treat before seizures develop
- Treat for defined period
- Start with reasonable time window after causative event
- Do not interfere with functional recovery from event
- Treatment is free of significant side effects